Information | |
---|---|
has gloss | eng: In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p ≤ ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved. |
lexicalization | eng: Hardy space |
instance of | c/Hardy spaces |
Meaning | |
---|---|
German | |
has gloss | deu: In der Funktionentheorie ist ein Hardy-Raum H^p ein Funktionenraum holomorpher Funktionen auf bestimmten Teilmengen von \mathbbC}. Hardy-Räume sind die Entsprechungen der L^p-Räume in der Funktionalanalysis. Sie werden nach Godfrey Harold Hardy benannt, der sie 1914 einführte. |
lexicalization | deu: Hardy-Raum |
French | |
lexicalization | fra: Espaces De Hardy |
Italian | |
has gloss | ita: In analisi complessa uno spazio di Hardy è l'analogo dello spazio Lp in analisi funzionale. Il suo nome deriva da G. H. Hardy. |
lexicalization | ita: spazio di Hardy |
Russian | |
has gloss | rus: В комплексном анализе пространство Харди является аналогом L^p-пространства в функциональном анализе. |
lexicalization | rus: Пространство Харди |
Chinese | |
has gloss | zho: 在複分析中,哈代空間(或哈代類) H^p 是單位圓盤或上半平面上的某類全純函數。高德菲·哈羅德·哈代首先在1915年考慮這類問題。在實分析中,實哈代空間是複哈代空間的成員在實數軸上的邊界值。對於 1 < p < \infty,實哈代空間基本上等於 L^p 空間。當 p \leq 1 時,L^p 空間較難操作,而哈代空間的性質就比較容易掌握。 |
lexicalization | zho: 哈代空間 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint