Information | |
---|---|
has gloss | eng: Kernel principal component analysis (kernel PCA) is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a reproducing kernel Hilbert space with a non-linear mapping. |
lexicalization | eng: Kernel principal component analysis |
instance of | c/Kernel methods for machine learning |
Media | |
---|---|
media:img | Kernel pca input.png |
media:img | Kernel pca output gaussian.png |
media:img | Kernel pca output.png |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint