Information | |
---|---|
has gloss | eng: Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution. Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge-Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step. Multistep methods attempt to gain efficiency by keeping and using the information from previous steps rather than discarding it. Consequently, multistep methods refer to several previous points and derivative values. In the case of linear multistep methods, a linear combination of the previous points and derivative values is used. |
lexicalization | eng: linear multistep method |
instance of | e/Numerical ordinary differential equations |
Meaning | |
---|---|
German | |
has gloss | deu: Mehrschrittverfahren sind Verfahren zur numerischen Lösung von gewöhnlichen Differentialgleichungen. Im Gegensatz zu Einschrittverfahren, wie etwa dem Eulerschen Polygonzugverfahren oder den Runge-Kutta-Verfahren, nutzen Mehrschrittverfahren die Information aus den zuvor bereits errechneten Stützpunkten. |
lexicalization | deu: Mehrschritt-Verfahren |
lexicalization | deu: Mehrschrittverfahren |
Russian | |
has gloss | rus: Ме́тод А́дамса — разностный метод численного интегрирования обыкновенных дифференциальных уравнений, позволяющий вычислять таблицу приближённых значений решения в начальных точках. |
lexicalization | rus: Метод Адамса |
Ukrainian | |
has gloss | ukr: Метод Адамса — різницевий метод чисельного інтегрування звичайних диференійних рівнянь, який дозволяє обчислювати таблицю наближених значень розв'язку в початкових точках. |
lexicalization | ukr: Метод Адамса |
Lexvo © 2008-2024 Gerard de Melo. Contact Legal Information / Imprint